Selective Feedback Stabilization of Ginzburg–Landau Spiral Waves in Circular and Spherical Geometries

Jia-Yuan Dai

National Chung Hsing University

January 17, 2022

・ロト ・四ト ・ヨト ・ヨト

3

Jia-Yuan Dai

Selective Feedback Stabilization of Ginzburg–Landau Spiral Wavesin Circular and Spherical Geometries 1/15

Research Focus

Jia-Yuan Dai

Explain, predict, and control formation of spiral waves.

$$\partial_t \Psi = (1 + i \eta) \Delta_{\mathcal{M}} \Psi + \lambda (1 - |\Psi|^2 - i \beta |\Psi|^2) \Psi.$$

- $\Delta_{\mathcal{M}}$: the Laplace–Beltrami operator on \mathcal{M} .
- Geometry: $\mathcal{M} = B^2$ with Robin boundary, or $\mathcal{M} = S^2$.
- $\eta, \beta \in \mathbb{R}$: given parameters.
- $\lambda > 0$: adjustable bifurcation parameter.
- gauge equivariance: Ψ is a solution if and only if $e^{i\omega}\Psi$ is a solution for each fixed $\omega \in S^1$.

イロン イロン イヨン イヨン

Ginzburg–Landau Spirals

Figure: The amplitude $|\Psi|$ and level sets of the phase $\arg(\Psi) = 0, \pi$. The tip is a phase singularity; see [Aranson, Kramer, 2002].

Jia-Yuan Dai

Selective Feedback Stabilization of Ginzburg-Landau Spiral Wavesin Circular and Spherical Geometries 4/15

Goal: Prove numerical or experimental evidence on spiral waves.

Trilogy of Research

Part 1: Existence

Analysis: Global bifurcation by symmetry breaking.

Part 2: Stability Analysis

Significance: Stable spirals are observable.

How about unstable spirals?

Part 3: Delayed Feedback Stabilization

3

Spiral Ansatz

Consider $\mathcal{M} = S^2$ for illustration. In polar coordinates

$$(s, \varphi) \mapsto (\sin(\vartheta)\cos(\varphi), \sin(\vartheta)\sin(\varphi), \cos(\vartheta)),$$

decompose $L^2(S^2)$ into invariant subspaces as

$$L^2(S^2) = \bigoplus L^2_n, \quad L^2_n := \{\psi(\vartheta, \varphi) = u(\vartheta) e^{in\varphi}\}.$$

Task: Fix $m \in \mathbb{N}$ and seek nontrivial solutions of the spiral Ansatz

$$\Psi(t,\vartheta,\varphi)=e^{-i\Omega t}\,u(\vartheta)\,e^{im\varphi}.$$

・ 回 と ・ ヨ と ・ ・ ヨ と …

6/15

• Unknowns: rotation frequency $\Omega \in \mathbb{R}$ and profile $u(\vartheta)$.

• *m* is the number of arms; Tips are the two poles of S^2 .

1-armed Spirals

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Jia-Yuan Dai

Selective Feedback Stabilization of Ginzburg–Landau Spiral Wavesin Circular and Spherical Geometries 7/15

Existence of Spirals

Substituting the spiral Ansatz $\Psi(t, \vartheta, \varphi) = e^{-i\Omega t} \psi(\vartheta, \varphi)$ yields the (elliptic) spiral wave equation:

$$(1+i\eta)\Delta_m\psi+i\Omega\psi+\lambda(1-|\psi|^2-i\beta|\psi|^2)\psi=0,$$

where Δ_m is the restriction of Δ_{S^2} on L^2_m .

 $Known: \operatorname{Spec}(-\Delta_m) = \{\lambda_k := (m+k)(m+k+1) : k \in \mathbb{N}_0\}.$

Theorem (Existence, [Dai, Lappicy, 2021])

Each $\lambda \in (\lambda_k, \lambda_{k+1}]$ admits an $\epsilon > 0$ so that the Ginzburg–Landau equation has 2k + 2 spiral waves for each $\eta, \beta \in (-\epsilon, \epsilon)$ and $\eta \neq \beta$.

イロト イポト イヨト イヨト

Bifurcation Diagram

Jia-Yuan Dai

Selective Feedback Stabilization of Ginzburg–Landau Spiral Wavesin Circular and Spherical Geometries 9/15

L²-instability of Spirals

Local stability of spiral waves for $0 \le |\eta|$, $|\beta| \ll 1$ can be reduced to the variational case $(\eta, \beta) = (0, 0)$.

 ψ₀ ∈ C₀ is (locally asymptotically) stable if the principle eigenvalue µ^{*} of the associated linearized operator

$$\mathcal{L}[V] := \Delta_{S^2} V + \lambda \left((1 - 2|\psi_0|^2) V - |\psi_0|^2 e^{2im\varphi} \overline{V} \right)$$

イロト イポト イヨト イヨト

3

is negative.

Theorem ([Cheng, 2020])

 $\mu^* \geq$ 0, i.e., ψ_0 cannot be stable.

Jia-Yuan Dai

Selective Feedback Stabilization of Ginzburg–Landau Spiral Wavesin Circular and Spherical Geometries 10/15

Question: Can ψ_0 be stabilized in a noninvasive way? **Answer**: Yes, by introducing the delayed feedback control:

$$\partial_t \Psi = \Delta_{S^2} \Psi + \lambda \left(1 - |\Psi|^2
ight) \Psi + \left| b \left(\Psi - \frac{h}{h} \Psi(t - \tau, \vartheta, \varphi - \xi)
ight) \right|.$$

The control triple (h, τ, ξ) consists of

- output signal $h \in \mathbb{C}$ and |h| = 1;
- time delay $\tau > 0$;
- space delay $\xi \in S^1$.

Jia-Yuan Dai

イロト イポト イヨト イヨト

э

The control triple (h, τ, ξ) is called noninvasive if ψ_0 is also a solution of the control system, i.e., the control term

$$b(\Psi - \frac{h}{h}\Psi(t - \tau, \vartheta, \varphi - \xi))$$

vanishes at $\Psi(t, \vartheta, \varphi) = \psi_0(\vartheta, \varphi) = u_0(\vartheta) e^{im\varphi}$.

- The symmetry u₀(ϑ) = u₀(π − ϑ) yields the noninvasive control triples (h, τ, ξ) = (e^{imξ}, τ, ξ).
- <u>Task</u>: Find noninvasive control triples and b < 0 so that ψ₀ becomes stable.

イロト イポト イヨト イヨト

When $\tau = 0$, the decomposition $L^2(S^2) = \bigoplus L_n^2$ yields linearized operators indexed by $n \in \mathbb{Z}$:

$$\mathcal{L}_n + b\left(1 - e^{im\xi}e^{-in\xi}\right)\mathcal{I},$$

where \mathcal{L}_n is the restriction of \mathcal{L} to L_n^2 .

- The principal eigenvalue of \mathcal{L}_n is smaller than μ_* .
- The control term shifts the spectrum of *L_n* and does not produce instability when *b* < 0.

Jia-Yuan Dai

イロト イポト イヨト イヨト

Step 2: Spectral Gap

$$\mathcal{L}_n + b\left(1 - e^{im\xi}e^{-in\xi}\right)\mathcal{I},$$

- The nonresonance cases $n \neq m$ yield a spectral gap and so $\xi \in S^1$ and b < 0 exist so that ψ_0 is stabilized in L^2_n .
- For the resonance case n = m the control term disappears, but it is known that ψ_0 is stable on L_m^2 .
- The spectral gap persists for $0 < \tau \ll 1$, by carefully studying the characteristic equations.

A (1) × A (2) × A (2) ×

Summary

We successfully apply the control triple method to stabilize spiral waves selectively, i.e., only the spiral with prescribed number of arms and symmetry is stabilized:

WHAT'S NEXT

- Can we stabilize spirals on C_j for $j \ge 2$?
- Can we stabilize traveling waves?

くぼ ト く ヨ ト く ヨ ト