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Research Focus

Explain, predict, and control formation of spiral waves.

physiology chemistry physics
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Complex Ginzburg-Landau Equation
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OV =1+in)ApV+A(1—|V?—igV>2)w.

A pq: the Laplace—Beltrami operator on M.

Geometry: M = B? with Robin boundary, or M = §2.
1, B8 € R: given parameters.

A > 0: adjustable bifurcation parameter.

gauge equivariance: W is a solution if and only if e“V is a
solution for each fixed w € S!.
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Ginzburg—Landau Spirals

Figure: The amplitude |W| and level sets of the phase arg(V) = 0, 7. The
tip is a phase singularity; see
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Goal and Trilogy

Goal: Prove numerical or experimental evidence on spiral waves.

Trilogy of Research

m Part 1: Existence
Analysis: Global bifurcation by symmetry breaking.

m Part 2: Stability Analysis
Significance: Stable spirals are observable.

How about unstable spirals?

m Part 3: Delayed Feedback Stabilization
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Spiral Ansatz

Consider M = S? for illustration. In polar coordinates
(s,) = (sin(¥)cos(p),sin(?)sin(p), cos()),
decompose L2(S?) into invariant subspaces as
=@ L= {009 = u@) e},
Task: Fix m € N and seek nontrivial solutions of the spiral Ansatz
U(t, 0, @) = e y() ™.

m Unknowns: rotation frequency Q € R and profile u(%).

m m is the number of arms; Tips are the two poles of S2.
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1-armed Spirals
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Existence of Spirals

Substituting the spiral Ansatz W(t, 9, ) = e 2 4)(¥, ) yields the
(elliptic) spiral wave equation:

(Lim) Bt +i Q¢+ A (1= [ =i BI[7) v =0,
where A, is the restriction of Ag. on L2

Known : Spec(—Ap) = { Ak ;== (m+ k)(m+ k+1): k € No}.

Theorem (Existence, [Dai, Lappicy, 2021])

Each X € (Ak, Ak+1] admits an € > 0 so that the Ginzburg-Landau
equation has 2k + 2 spiral waves for each n, 5 € (—¢,€) and n # (.
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Bifurcation Diagram

¥ € L3,
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[2-instability of Spirals

Local stability of spiral waves for 0 < ||, |5| < 1 can be reduced
to the variational case (7, 5) = (0,0).

m )y € Cp is (locally asymptotically) stable if the principle
eigenvalue p* of the associated linearized operator

[,[V] = A52 V+ A ((1 — 2|1/}0’2)V _ |¢0|2e2im<pV)
is negative.

Theorem ([Cheng, 2020])

w* >0, ie., Yo cannot be stable.
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Control Triple Method

Question: Can g be stabilized in a noninvasive way?

Answer: Yes, by introducing the delayed feedback control:

OV = Ago W+ A (L— [WP)W +[b (W= hW(t— 7,0, — )]

The control triple (h,7,&) consists of
m output signal h € C and |h| =1,
m time delay 7 > 0;
m space delay ¢ € ST
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Noninvasiveness

The control triple (h,7,¢) is called noninvasive if vy is also a
solution of the control system, i.e., the control term

b(W—hV(t—T1,9,¢0—"))

vanishes at W(t,9, @) = ¥o(V, @) = up()) ™.
m The symmetry up(J) = ug(m — ¥) yields the noninvasive
control triples (h,7,&) = ("™, 7,¢).
m Task: Find noninvasive control triples and b < 0 so that g
becomes stable.
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Step 1: Fourier Decomposition

When 7 = 0, the decomposition L2(5?) = @D L2 yields linearized
operators indexed by n € Z:

£n+b(1—ei’" e~ n )I,

where L, is the restriction of £ to L2.
m The principal eigenvalue of L, is smaller than p,.

m The control term shifts the spectrum of £, and does not
produce instability when b < 0.
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Step 2: Spectral Gap

L,+b (1 — eimig=in )I,
m The nonresonance cases n # m yield a spectral gap and so
€ S and b < 0 exist so that 1)y is stabilized in L2.

m For the resonance case n = m the control term disappears,
but it is known that 1)y is stable on L2,

m The spectral gap persists for 0 < 7 < 1, by carefully studying
the characteristic equations.
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Summary

We successfully apply the control triple method to stabilize spiral
waves selectively, i.e., only the spiral with prescribed number of
arms and symmetry is stabilized:

WHAT'S NEXT

m Can we stabilize spirals on C; for j > 27

m Can we stabilize traveling waves?
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